Unravel Sport

unravelsports Documentation โ€” unravelsports 1.2.0 documentation

LinkedIn Profile: https://www.linkedin.com/in/joris-bekkers-33138288/

Sports Analytics meets Open Source | PySport

Football Match Intelligence is a Streamlit app that converts SkillCorner tracking plus event data into interactive tactical analysis. You can explore match overviews (pass networks, shot maps, momentum and xG), dive into player profiling (heatmaps, speed zones and movement patterns), analyze team structure (field tilt, defensive organization and possession chains), compare players head-to-head with pizza charts, and reconstruct key events frame by frame with a tactical board that highlights passing options. Live app: https://lnkd.in/eChbEpud Repository: https://lnkd.in/e-drHUD2

๐‡๐จ๐ฐ ๐ˆ ๐ฅ๐ž๐š๐ซ๐ง๐ž๐ ๐ญ๐จ ๐ฐ๐จ๐ซ๐ค ๐ฐ๐ข๐ญ๐ก ๐Ÿ๐จ๐จ๐ญ๐›๐š๐ฅ๐ฅ ๐ญ๐ซ๐š๐œ๐ค๐ข๐ง๐  ๐๐š๐ญ๐š (๐š๐ง๐ ๐ฐ๐ก๐š๐ญ ๐ข๐ญ ๐ฅ๐ž๐ ๐ญ๐จ) A few months ago, I realized something: If you want to understand football tactics, event data isnโ€™t enough. You have to learn from space, motion, and interaction. That curiosity sent me deep into research on transformers, graph neural networks, and spatiotemporal modeling โ€” and directly led me to build my first transformer-based similarity retrieval system for the SkillCorner ร— PySport Analytics Cup. The system learns from full-pitch scenes (22 players + ball) to: โ€ข retrieve tactically identical plays โ€ข cluster recurring patterns โ€ข automatically classify team actions and sequences โ€ข make visual insights easier for analysts and coaches to use Papers that shaped my thinking ๐Ÿ‘‡ 1๏ธโƒฃ A Graph Neural Network deep-dive into successful counterattacks Joris Bekkers Amod Sahasrabudhe https://lnkd.in/gnDwBm5a The purpose of this research is to build gender-specific Graph Neural Networks to model the likelihood of a counterattack being successful and uncover what factors make them successful in professional soccer. 2๏ธโƒฃ Graph representations for the analysis of multi-agent spatiotemporal sports data Dominik Raabe Prof. Dr. Daniel Memmert Reinhard Nabben https://lnkd.in/g36xemtf Proposed Tactical Graphs, an alternative graph-based format capable of producing integrative, contextualized models for machine learning applications 3๏ธโƒฃ ๐ƒ๐ž๐ญ๐ž๐œ๐ญ๐ข๐จ๐ง ๐จ๐Ÿ ๐ญ๐š๐œ๐ญ๐ข๐œ๐š๐ฅ ๐ฉ๐š๐ญ๐ญ๐ž๐ซ๐ง๐ฌ ๐ฎ๐ฌ๐ข๐ง๐  ๐ฌ๐ž๐ฆ๐ข-๐ฌ๐ฎ๐ฉ๐ž๐ซ๐ฏ๐ข๐ฌ๐ž๐ ๐ ๐ซ๐š๐ฉ๐ก ๐ง๐ž๐ฎ๐ซ๐š๐ฅ ๐ง๐ž๐ญ๐ฐ๐จ๐ซ๐ค๐ฌ Pascal Bauer Gabriel Anzer https://lnkd.in/gvy9VyBe Presenting practical applications of approach using the detection of overlapping runs as a showcase 4๏ธโƒฃ ๐’๐ž๐ฅ๐Ÿ-๐’๐ฎ๐ฉ๐ž๐ซ๐ฏ๐ข๐ฌ๐ž๐ ๐‘๐ž๐ฉ๐ซ๐ž๐ฌ๐ž๐ง๐ญ๐š๐ญ๐ข๐จ๐ง๐ฌ ๐Ÿ๐จ๐ซ ๐“๐ซ๐š๐œ๐ค๐ข๐ง๐  ๐ƒ๐š๐ญ๐š Karun Singh https://lnkd.in/gsKbiCrF Building tools that leverage tracking data to help accelerate video analysis workflows. 5๏ธโƒฃ ๐“๐ž๐ฆ๐ฉ๐จ๐ซ๐š๐ฅ ๐†๐ซ๐š๐ฉ๐ก ๐๐ž๐ญ๐ฐ๐จ๐ซ๐ค ๐…๐ซ๐š๐ฆ๐ž๐ฐ๐จ๐ซ๐ค ๐Ÿ๐จ๐ซ ๐๐ฎ๐š๐ง๐ญ๐ข๐Ÿ๐ฒ๐ข๐ง๐  ๐๐š๐ฌ๐ฌ ๐‘๐ž๐œ๐ž๐ฉ๐ญ๐ข๐จ๐ง ๐๐ซ๐จ๐›๐š๐›๐ข๐ฅ๐ข๐ญ๐ข๐ž๐ฌ ๐€๐ ๐š๐ข๐ง๐ฌ๐ญ ๐ƒ๐ž๐Ÿ๐ž๐ง๐ฌ๐ข๐ฏ๐ž ๐’๐ญ๐ซ๐ฎ๐œ๐ญ๐ฎ๐ซ๐ž๐ฌ Pegah Rahimian Laszlo Toka https://lnkd.in/gpAW5DEC Proposed a framework for evaluating passing decisions against defensive structures using temporal graph networks

๐—”๐—ฟ๐˜๐—ถ๐—ณ๐—ถ๐—ฐ๐—ถ๐—ฎ๐—น ๐—œ๐—ป๐˜๐—ฒ๐—น๐—น๐—ถ๐—ด๐—ฒ๐—ป๐—ฐ๐—ฒ ๐—ถ๐—ป ๐—ฆ๐—ฝ๐—ผ๐—ฟ๐˜๐˜€ ๐—”๐—ป๐—ฎ๐—น๐˜†๐˜๐—ถ๐—ฐ๐˜€ course at University of Toronto.

Football analytics often happens behind closed doors, both in science and in practice. I want to do the exact opposite: ๐—ฏ๐—ฒ ๐—ฎ๐˜€ ๐—ผ๐—ฝ๐—ฒ๐—ป ๐—ฎ๐˜€ ๐—ฝ๐—ผ๐˜€๐˜€๐—ถ๐—ฏ๐—น๐—ฒ. Thatโ€™s why Iโ€™m proud that I was invited to present ๐ƒ๐š๐ญ๐š๐๐š๐ฅ๐ฅ๐๐ฒ at the PyData Eindhoven X PySport Conference last December. ๐ƒ๐š๐ญ๐š๐๐š๐ฅ๐ฅ๐๐ฒ is an open-source Python package for football analytics, focused on contextualized and tactical analysis by ๐—ฐ๐—ผ๐—บ๐—ฏ๐—ถ๐—ป๐—ถ๐—ป๐—ด ๐˜๐—ฟ๐—ฎ๐—ฐ๐—ธ๐—ถ๐—ป๐—ด ๐—ฎ๐—ป๐—ฑ ๐—ฒ๐˜ƒ๐—ฒ๐—ป๐˜ ๐—ฑ๐—ฎ๐˜๐—ฎ. Since PyData and PySports share these values, they recorded the presentation (and all others!) and made it freely available: ๐ŸŽฅ ๐—ช๐—ฎ๐˜๐—ฐ๐—ต ๐˜๐—ต๐—ฒ ๐—ณ๐˜‚๐—น๐—น ๐˜๐—ฎ๐—น๐—ธ ๐—ต๐—ฒ๐—ฟ๐—ฒ:ย https://lnkd.in/ekQJSDt9 Open source isnโ€™t just codeโ€”itโ€™s collaboration, transparency, and progress. Thanks to the community, ๐ƒ๐š๐ญ๐š๐๐š๐ฅ๐ฅ๐๐ฒ has grown further than I could have imagined (>45k downloads!). Iโ€™m excited to see what the future brings! ๐Ÿ”— ๐—ฆ๐—ผ๐˜‚๐—ฟ๐—ฐ๐—ฒ ๐—ฐ๐—ผ๐—ฑ๐—ฒ: https://lnkd.in/ey6MxCjJ ๐Ÿ“š ๐——๐—ผ๐—ฐ๐˜‚๐—บ๐—ฒ๐—ป๐˜๐—ฎ๐˜๐—ถ๐—ผ๐—ป:ย https://lnkd.in/en9jrX6U ๐Ÿ‘‡ See the comments for the code to create a visualization like the one below using ๐ƒ๐š๐ญ๐š๐๐š๐ฅ๐ฅ๐๐ฒ. Thanks for the open source community for all your help, support, and guidance. Special thanks to Daan Grob who intially set up ๐ƒ๐š๐ญ๐š๐๐š๐ฅ๐ฅ๐๐ฒ with me and to Tygo Nikamp for showcasing your pressure analysis at the conference with me.

OT cybersecurity resources

Sources: Mike Holcomb LinkedIn post

Want hands-on experience in OT cybersecurity?

Start with these FREE projects – no power plant required!

Getting started in OT/ICS cybersecurity doesn’t have to be hard.

And it doesn’t have to be expensive.

So start with these projects and build from there!

1. Setup Your Own “Attack & Defend” OT/ICS Lab with Labshock

Labshock is a new virtual OT environment that helps you get started!

Use it to explore defensive capabilities like detection and SEIM.

As well as having an OT environment to attack!

https://lnkd.in/eG-Y-Z2z

2. Hack Into a Power Plant with GRFICSv2

GRFICS takes a fun twist with virtual OT networks.

Giving you a CCTV feed to watch over the environment.

And then allowing you to see what changes happen due to your “testing.”

Is that smoke I see coming out of the power plant???

https://lnkd.in/eam3eQDx

3. Setup an OT/ICS Honeypot

Honeypots are systems that are designed to be hacked.

Set one of these virtual honeypots up for target practice.

Take your time to interact with different OT protocols like Modbus.

github.com/mushorg/conpot
Probably the most popular OT/ICS honeypot to get started with

https://lnkd.in/emiiasR3
Another OT/ICS honeypot from T-Mobile (yes, THAT T-Mobile)

4. Analyze Real World OT/ICS Cyber Incidents

While this might not be as exciting as some of the others…

Learning from real world incidents can help you learn.

-> Understand how attackers break into OT environments
-> Learn what attackers do once they are inside OT networks
-> Figure out how to prevent the same attacks from occuring again

OT/ICS cybersecurity companies such as Dragos and Mandiant release some incredible research on the latest incidents.

Need help getting started?

Lookup Stuxnet, TriSIS, Colonial and Fuxnet.

And don’t stop!

5. Find OT/ICS Assets Exposed to the Internet and Contact the Owners

Want to learn more about finding OT/ICS assets on the Internet?

Check out my YouTube video here:

https://lnkd.in/e7e2VkbA

Once you find these assets without obtrusive means, see if you can determine who the asset owner is.

If you’re really feeling brave, reach out and contact them.

Honestly, most of the time your work will fall on deaf ears.

But every once in a while it has a significant impact!

Just don’t share sensitive information with others.

6. Write Your Own Modbus Scanner with Python and/or ChatGPT

Writing defensive and offensive tools can be a great way to learn!

Not a developer like me? Use ChatGPT or other GenAI tools.

Interested in using ChatGPT to create security tools?

Watch “Hacking ICS/OT (& IT) with ChatGPT”

https://lnkd.in/eVduTgcC

Don’t forget – the best way to learn is to share!

As you work through your projects…

-> Document your steps
-> Take screenshots
-> Post and share
-> Have fun!
-> ๐Ÿ™‚

P.S. What would you start with first?

๐Ÿ”” Follow Mike Holcomb for more OT/ICS cybersecurity
โ™ป๏ธ Useful? Share to help others!

Growth Mindset

Sumber: Post LinkedIn Gilang Bhagaskara

Dulu saya kenal dua orang programmer.

Yang satu jago banget. Web dev, frontend-nya rapi, backend-nya efisien, debugging cepet. Tapi dia punya satu kebiasaan:
nggak mau belajar hal baru.
Udah nyaman di stack lama, ogah ngulik bahasa lain, bahkan anti banget sama hal-hal di luar “zona aman” dia.
“Ngapain belajar lagi? Gue udah cukup senior kok.”
Dan iya, saat itu… dia memang salah satu yang paling top di tim.

Yang satu lagi, anak baru.
Skillnya waktu itu pas-pasan. Tapi attitude-nya? Luar biasa.
Apapun dilempar, dia coba.
Disuruh ngulik Rust? Digas.
Dapet proyek mobile? Buka docs Flutter, mulai dari nol.
Sempat salah, sempat di-review habis-habisan, tapi nggak pernah berhenti belajar.

Fast forward 5 tahun…

Yang pertama masih di tempat yang sama.
Masih web dev, masih stack lama, dan gajinya stagnan.
Sementara yang kedua, sekarang lead engineer di perusahaan multinasional, megang sistem skala besar, dan gajinya?
Di atas 50 juta per bulan.

Kenapa?
Karena skill itu bisa diasah. Tapi growth mindset nggak bisa dipaksain.
Dan di dunia tech yang berubah setiap hari, yang tahan lama bukan yang paling jago, tapi yang paling mau belajar.

Kita nggak selalu butuh orang yang “bisa segalanya.”
Tapi kita butuh orang yang nggak takut belajar apa aja.